skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gangopadhyay, Mayukh R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In loop quantum cosmology, the slow-roll inflation is generic, and when the kinetic energy of the scalar field dominates at the bounce, the evolution of the Friedmann-Lemaître-Robertson-Walker universe will go through three distinguishable epochs, bouncing, transition, and finally slow-roll inflation, before the reheating commences. The bouncing dynamics are insensitive of the potential and initial conditions, so that the expansion factor and the scalar field can be described uniquely by a universal solution during this epoch. After about 105 Planck time, the epoch of transition starts and the universe rapidly turns over from the kinetic energy dominated state to the potential energy dominated one, whereby the slow-roll inflationary phase begins. In this paper, we consider the power law plateau potential and study the pre-inflationary cosmology for different sets of initial conditions, so that during the slow-roll inflation epoch enough e-folds will be produced. Considering the generalized reheating and comparing with the recent Planck 2018 data, we are able to constrain the total number of e-folds (NT) from the bounce till today to be consistent with the current observable universe. Depending on the matter driving the reheating (subject to the different dominant equations of states), we report the observationally allowed NT and reheating temperature and find in particular NT≃127, which is significantly different from the one NT≳141 obtained previously without considering the reheating phase. 
    more » « less